RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. THIRD SEMESTER EXAMINATION, DECEMBER 2017

SECOND YEAR [BATCH 2016-19] PHYSICS [General]

Date : 19/12/2017 Time : 11 am - 1 pm

Paper : III

Full Marks: 50

[Use a separate Answer Book for each Group]

<u>Group – A</u>

Ansv	wer <u>ar</u>	y six questions; each carrying 5 marks:	$[6 \times 5]$
1.	Find	the expression for velocity and acceleration for a particle in plane polar coordinates.	5
2.	a) b)	Deduce the equation of motion for the rocket moving in constant gravitational field by burning fuel at constant rate. Integrate the equation of motion to determine the velocity of the rocket at any time.	3 2
3.	In a fram velo	rotating coordinate system the relation between the velocity of fixed frame and moving e is given by $\frac{d\vec{r}}{dt}\Big _F = \frac{d\vec{r}}{dt}\Big _m + \vec{w} \times \vec{r}$, where \vec{r} is the position vector and \vec{w} is the angular city.	
	a) b)	Find the relation between the acceleration of the fixed frame and the acceleration of the moving frame. Identify different acceleration terms arises. Find the equation of motion for a particle to an observer on the earth's surface. Use suitable approximation to reduce the equation of motion	2
			3
4.	Shov a) b)	the orbit of the particle must be confined in a plane; the total energy is a 'constant of motion'.	2 3
5.	Calc 'M'	ulate the gravitational potential and intensity at any point inside a solid sphere of mass and radius ' a '. What will be the gravitational intensity at any point outside the sphere?	4+1
6.	a)	What is the relation between angular momentum and torque on a particle? Find the condition for the conservation of angular momentum of a particle.	1+1
	0)	non-conservative forces.	1+1+1
7.	a)	Show that the centre of mass of two particles is on the line joining them at a point whose distance from each particle is inversely proportional to the mass of that particle?	3
	b)	Two particles each of mass 2 kg are moving with velocities $2\hat{i} + 4\hat{j}$ m/s and $5\hat{i} + 6\hat{j}$ m/s respectively. Find the kinetic energy of the system relative to the centre of mass.	2
8.	a) b)	Reduce two body problem to one body problem and obtain equation of motion for equivalent one body problem for two masses. A couple of 10 N-m is applied to a fly wheel of mass 10 kg and radius of gyration 0.5m.	3
	~/	What is the resultant angular acceleration?	2

9.	a) b)	State and prove the theorem of perpendicular axes for moment of inertia.	3		
	0)	symmetry.	2		
10.	Defi and	ne gravitational self-energy. Calculate the gravitational self-energy of a sphere of mass 'M' radius 'r'.	1+4		
<u>Group – B</u>					
Answer any four questions; each carrying 5 marks:					
11.	a)	What are the coherent sources of light?			
	b)	Calculate the necessary formula to find the wavelength of a monochromatic light using Newton's ring experiment.	1+4		
12.	a)	What is Fresnel's half period zone and how is it formed?	1+2		
	b)	Write down two differences between Fresnel and Fraunhofer class diffraction.	2		
13.	. In a Fraunhofer diffraction at a single slit, find out the condition for principle maxima, secondary maxima and minima.				
14.	a)	What is the resolving power of an instrument?	2		
	b)	What is Brewster's law? Also prove it.	1+2		
15.	a)	Define plane polarised and circularly polarised light.	2		
	b)	What is double refraction?	1		
	c)	Define positive crystal and negative crystal.	1+1		
16.	a)	How is quarter and half wave plate made?	11/2+11/2		
	b)	Calculate the thickness of a quartz half wave plate for the line 6563Å for which the extraordinary and ordinary refractive index are $\mu_e = 1.55085$ and $\mu_0 = 1.54184$.	2		

_____×_____